Which vehicle has the greatest momentum?
- A. A 9,000-kg railroad car traveling at 3 m/s
- B. A 2,000-kg automobile traveling at 24 m/s
- C. A 1,500-kg MINI Coupe traveling at 29 m/s
- D. A 500-kg glider traveling at 89 m/s
Correct Answer: D
Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. The momentum formula is p = m v, where p is momentum, m is mass, and v is velocity. Comparing the momentum of each vehicle: A: 9,000 kg 3 m/s = 27,000 kg·m/s B: 2,000 kg 24 m/s = 48,000 kg·m/s C: 1,500 kg 29 m/s = 43,500 kg·m/s D: 500 kg 89 m/s = 44,500 kg·m/s. Therefore, the glider (500-kg) traveling at 89 m/s has the greatest momentum of 44,500 kg·m/s, making it the correct choice. Options A, B, and C have lower momentum values compared to option D, proving that the 500-kg glider traveling at 89 m/s has the highest momentum among the given vehicles.
You may also like to solve these questions
The buoyant force, F_b, experienced by an object submerged in a fluid is given by:
- A. F_b = W, the object's weight
- B. F_b = W_d, the weight of the fluid displaced by the object
- C. F_b = Ï, the density of the fluid
- D. F_b = V, the object's volume
Correct Answer: B
Rationale: The correct formula for the buoyant force experienced by an object submerged in a fluid is given by Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by the object. This is represented by the formula F_b = W_d, where W_d is the weight of the fluid displaced by the object. This force acts in the opposite direction to gravity and is responsible for objects floating or sinking in fluids. Choice A is incorrect because the buoyant force is not equal to the object's weight. Choice C is incorrect because the density of the fluid is not directly related to the buoyant force. Choice D is incorrect because the object's volume is not the determining factor for the buoyant force.
In fluid dynamics, the continuity equation, a fundamental principle, expresses the conservation of:
- A. Momentum
- B. Mass
- C. Energy
- D. Angular momentum
Correct Answer: B
Rationale: The continuity equation in fluid dynamics is a statement of the conservation of mass, making choice B the correct answer. It states that the mass entering a system must equal the mass leaving the system, assuming no mass is created or destroyed within the system. Conservation of momentum (choice A) is related to Newton's laws of motion and is not directly expressed by the continuity equation. Conservation of energy (choice C) involves different principles like the first law of thermodynamics and is not the focus of the continuity equation. Angular momentum (choice D) is also a different concept related to rotational motion and not described by the continuity equation.
A 5-cm candle is placed 20 cm away from a concave mirror with a focal length of 10 cm. What is the image distance of the candle?
- A. 20 cm
- B. 40 cm
- C. 60 cm
- D. 75 cm
Correct Answer: C
Rationale: To find the image distance of the candle, we use the mirror formula: 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance. In this case, the focal length f = 10 cm and the object distance do = 20 cm. Substituting these values into the formula gives us 1/10 = 1/20 + 1/di. Solving for di, we get di = 60 cm. Therefore, the image distance of the candle is 60 cm. Choice A (20 cm) is incorrect because it represents the object distance, not the image distance. Choice B (40 cm) is incorrect as it does not consider the mirror formula calculation. Choice D (75 cm) is incorrect as it does not match the correct calculation based on the mirror formula.
An object with a charge of 4 μC is placed 1 meter from another object with a charge of 2 μC. What is the magnitude of the resulting force between the objects?
- A. 0.04 N
- B. 0.072 N
- C. 80 N
- D. 8 10−6 N
Correct Answer: A
Rationale: To find the magnitude of the resulting force between two charges, we can use Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. The formula for Coulomb's law is:
F = k (|q1 q2| / r²),
where F is the force, k is the Coulomb constant, q1 and q2 are the charges, and r is the distance between the charges. Substituting the given values into the formula:
F = (9 10â¹ N·m²/C²) ((4 10â»â¶ C) (2 10â»â¶ C) / (1 m)²) = 0.04 N.
Therefore, the magnitude of the resulting force between the objects is 0.04 N.
For a compressible fluid subjected to rapid pressure changes, sound wave propagation becomes important. The speed of sound (c) depends on the fluid's:
- A. Density (Ï) only
- B. Viscosity (μ) only
- C. Density (Ï) and Bulk modulus
- D. Density (Ï) and Surface tension (γ)
Correct Answer: C
Rationale: In a compressible fluid, the speed of sound (c) depends on both the fluid's density (Ï) and Bulk modulus. Density affects the compressibility of the fluid, while Bulk modulus represents the fluid's resistance to compression and plays a crucial role in determining the speed of sound in a compressible medium. Viscosity and surface tension do not directly impact the speed of sound in a compressible fluid subjected to rapid pressure changes. Therefore, the correct answer is C.