Which vitamin is essential for calcium absorption and bone health?
- A. Vitamin A
- B. Vitamin C
- C. Vitamin D
- D. Vitamin E
Correct Answer: C
Rationale: Vitamin D is essential for calcium absorption in the intestines, which is crucial for maintaining strong and healthy bones. Without adequate vitamin D, the body cannot effectively absorb calcium, leading to weakened bones and an increased risk of fractures. Vitamin A (Choice A) is important for vision and immune function but is not directly involved in calcium absorption or bone health. Vitamin C (Choice B) is essential for collagen synthesis and immune function, but it does not play a direct role in calcium absorption or bone health. Vitamin E (Choice D) acts as an antioxidant and helps protect cells from damage, but it is not specifically required for calcium absorption or bone health. Therefore, the correct answer is Vitamin D as it is crucial for optimal bone health.
You may also like to solve these questions
The lymphatic system is a network of vessels and organs that plays a vital role in:
- A. Transporting oxygen and nutrients to cells
- B. Carrying waste products away from tissues
- C. Regulating body temperature
- D. Producing red blood cells
Correct Answer: B
Rationale: The correct answer is B: Carrying waste products away from tissues. The lymphatic system functions to maintain fluid balance in the body by removing excess fluid, filtering out harmful substances, and transporting waste products away from tissues. It does not primarily focus on transporting oxygen and nutrients to cells, regulating body temperature, or producing red blood cells. Choices A, C, and D are incorrect as the primary function of the lymphatic system is related to waste removal and maintaining fluid balance in the body, rather than roles such as nutrient transport, temperature regulation, or red blood cell production.
Which of the following describes a scalar quantity?
- A. Velocity
- B. Acceleration
- C. Force
- D. Speed
Correct Answer: D
Rationale: A scalar quantity is a physical quantity that has magnitude only, without any direction. Speed is an example of a scalar quantity because it only describes how fast an object is moving without specifying the direction of motion. Velocity, acceleration, and force are vector quantities because they have both magnitude and direction. Therefore, the correct answer is 'Speed.' Choices A, B, and C are incorrect because velocity, acceleration, and force are all vector quantities that involve both magnitude and direction.
Which factor most significantly affects the kinetic energy of an object?
- A. The object's mass
- B. The object's velocity
- C. The object's displacement
- D. The object's potential energy
Correct Answer: B
Rationale: Kinetic energy is directly proportional to the square of an object's velocity. This means that changes in velocity have a greater impact on the kinetic energy of an object compared to changes in mass, displacement, or potential energy. The mass of an object affects its kinetic energy, but the effect is linear, not squared like velocity. Displacement does not directly affect kinetic energy, as it is a measure of the change in position, not related to motion. Potential energy is a different form of energy and is not directly related to the kinetic energy of an object. Therefore, the velocity of an object has the most significant effect on its kinetic energy.
What is the balanced chemical equation for the reaction between sulfuric acid (H2SO4) and potassium hydroxide (KOH)?
- A. H2SO4 + KOH → K2SO4 + H2O
- B. 2H2SO4 + 2KOH → 2K2SO4 + 2H2O
- C. H2SO4 + 2KOH → K2SO4 + 2H2O
- D. H2SO4 + 2KOH → K2SO4 + H2O
Correct Answer: C
Rationale: When sulfuric acid (H2SO4) reacts with potassium hydroxide (KOH), it forms potassium sulfate (K2SO4) and water (H2O). To balance the equation, 2 KOH molecules are required to react with 1 H2SO4 molecule, resulting in 1 K2SO4 molecule and 2 H2O molecules. Therefore, the balanced chemical equation is H2SO4 + 2KOH → K2SO4 + 2H2O, which corresponds to option C. Choice A is incorrect because it does not account for the correct stoichiometry between the reactants and products. Choice B incorrectly doubles all the molecules in the reaction, leading to an unbalanced equation. Choice D incorrectly balances the equation with 1 KOH molecule instead of the required 2 KOH molecules, making it unbalanced. Thus, option C is the correct balanced chemical equation for the reaction between sulfuric acid and potassium hydroxide.
Differentiate between gene therapy and genetic engineering in the context of human intervention.
- A. Gene therapy aims to modify existing genes within body cells, while genetic engineering manipulates genes in embryos to be passed on to offspring.
- B. Gene therapy focuses on treating genetic diseases, while genetic engineering enhances desirable traits or eliminates undesirable ones.
- C. Both involve directly altering the DNA sequence, but gene therapy targets somatic cells and genetic engineering modifies germline cells.
- D. There is no fundamental difference; both terms are synonymous.
Correct Answer: B
Rationale: A) Incorrect. Gene therapy does aim to modify existing genes within body cells, but genetic engineering does not necessarily manipulate genes in embryos to be passed on to offspring. Genetic engineering can involve modifying genes in any type of cell, not just embryos.
B) Correct. Gene therapy is a medical intervention that aims to treat genetic diseases by correcting or replacing faulty genes within an individual's body cells. On the other hand, genetic engineering involves modifying genes to enhance specific traits or eliminate undesirable ones, often in the context of agriculture or biotechnology.
C) Incorrect. While both gene therapy and genetic engineering involve altering DNA sequences, the distinction lies in the target cells. Gene therapy targets somatic cells (non-reproductive cells), while genetic engineering typically involves modifying germline cells (reproductive cells that can pass on genetic changes to offspring).
D) Incorrect. There is