Why is warming up before exercise important?
- A. To prevent dehydration
- B. To prevent muscle soreness
- C. To prevent increased heart rate
- D. To prevent low blood sugar
Correct Answer: B
Rationale: Warming up before exercise is crucial to prevent muscle soreness. It helps by increasing blood flow to the muscles, improving flexibility, and preparing the body for physical activity. Dehydration, increased heart rate, and low blood sugar are not directly prevented by warming up before exercise. Dehydration is prevented by proper hydration before and during exercise; increased heart rate is a normal physiological response to exercise; and low blood sugar is managed through proper nutrition and timing of meals before physical activity.
You may also like to solve these questions
What happens to the potential energy of an object when it is lifted higher above the ground?
- A. Potential energy decreases
- B. Potential energy remains the same
- C. Potential energy increases
- D. Potential energy becomes zero
Correct Answer: C
Rationale: When an object is lifted higher above the ground, its potential energy increases. This is because the higher the object is lifted, the greater its potential energy due to the increased distance from the ground. The formula for gravitational potential energy is PE = mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height above the reference point. Therefore, as the height (h) increases, the potential energy (PE) also increases, making choice C the correct answer. Choices A, B, and D are incorrect because when an object is lifted higher, it gains potential energy rather than losing it, keeping it the same, or becoming zero. Thus, the correct answer is that the potential energy of an object increases when it is lifted higher above the ground.
Antigen-antibody binding is the principle behind:
- A. Vaccination
- B. Disinfection
- C. Sterilization
- D. Antibiotic resistance
Correct Answer: A
Rationale: Antigen-antibody binding is the principle behind vaccination. When a vaccine containing antigens (weakened or killed pathogens) is introduced into the body, the immune system produces antibodies that bind to these antigens. This binding triggers an immune response, leading to the production of memory cells that provide immunity against future infections by the same pathogen. Vaccination helps the body develop immunity without causing the disease itself, thereby protecting individuals from infectious diseases. Disinfection and sterilization involve different processes to eliminate or reduce pathogens on surfaces or objects. Antibiotic resistance is a phenomenon where bacteria evolve to resist the effects of antibiotics and is not directly related to antigen-antibody binding.
Which organelle is responsible for the final stages of protein modification and packaging for secretion in animal cells?
- A. Rough endoplasmic reticulum (RER)
- B. Smooth endoplasmic reticulum (SER)
- C. Ribosomes
- D. Golgi apparatus
Correct Answer: D
Rationale: The Golgi apparatus is responsible for the final stages of protein modification and packaging for secretion in animal cells. After proteins are synthesized in the rough endoplasmic reticulum (RER), they are transported to the Golgi apparatus for further processing, sorting, and packaging before being sent to their final destination within or outside the cell. The smooth endoplasmic reticulum (SER) is mainly involved in lipid metabolism and detoxification processes, not protein modification. Ribosomes are the cellular organelles responsible for protein synthesis, not the final stages of protein modification and packaging for secretion, which is the role of the Golgi apparatus.
In an SN2 reaction, what affects the rate of the reaction?
- A. Only the concentration of the nucleophile
- B. Only the concentration of the electrophile
- C. Neither the concentration of the nucleophile nor the electrophile
- D. Both the concentration of the nucleophile and the electrophile
Correct Answer: D
Rationale: In an SN2 reaction, the rate of the reaction is affected by both the concentration of the nucleophile and the electrophile. The rate-determining step involves the nucleophile attacking the electrophile, so the concentrations of both species will impact the reaction rate. Increasing the concentration of the nucleophile increases the frequency of nucleophilic attacks, while increasing the concentration of the electrophile provides more opportunities for the nucleophile to react. Therefore, the correct answer is that both the concentration of the nucleophile and the electrophile affect the rate of the SN2 reaction. Choices A, B, and C are incorrect as they do not consider the interplay between the nucleophile and the electrophile in determining the overall reaction rate in an SN2 mechanism.
What is the term for a genetic disorder caused by a mutation on the X chromosome?
- A. Autosomal dominant disorder
- B. Autosomal recessive disorder
- C. Sex-linked recessive disorder
- D. Sex-linked dominant disorder
Correct Answer: C
Rationale: A genetic disorder caused by a mutation on the X chromosome is termed a sex-linked recessive disorder (Option C). This type of disorder is more commonly seen in males due to their single X chromosome, making them more vulnerable to X-linked mutations. Females have two X chromosomes, providing a protective effect against X-linked disorders.\n- Autosomal dominant disorders (Option A) result from a mutation in one copy of a gene on non-sex chromosomes (autosomes) and are not specifically related to the X chromosome.\n- Autosomal recessive disorders (Option B) occur due to mutations in both copies of a gene on autosomes, not on the X chromosome.\n- Sex-linked dominant disorders (Option D) are rare and lead to more severe symptoms in males as they only require one copy of the mutated gene on the X chromosome to express the disorder. However, this is not the term for a genetic disorder caused by an X chromosome mutation.
Nokea