The three important allotropic forms of phosphorus are red, white, and ___________.
- A. green
- B. gray
- C. black
- D. silver
Correct Answer: C
Rationale: The three important allotropic forms of phosphorus are red, white, and black. These forms indicate the different physical properties and reactivity of phosphorus under various conditions. Red phosphorus is more stable and less reactive than white phosphorus, while black phosphorus is the least reactive form. Choice C, 'black,' is the correct answer as it completes the sequence of allotropic forms of phosphorus. Choices A, 'green,' B, 'gray,' and D, 'silver,' are incorrect as they do not represent recognized forms of phosphorus.
You may also like to solve these questions
Where would you expect tap water to fall on the pH scale?
- A. Between 1 and 3
- B. Between 4 and 6
- C. Between 6 and 8
- D. Between 8 and 10
Correct Answer: C
Rationale: Tap water typically falls within the pH range of 6 to 8, making it slightly acidic to neutral. Most municipal water systems aim to provide water that is safe for consumption and falls within this pH range. A pH level of 7 is considered neutral, so tap water may vary slightly on either side of this number but typically remains within the 6 to 8 range to ensure it is safe for consumption. Choices A, B, and D are incorrect because tap water is not expected to have a pH as low as 1-3 (highly acidic) or as high as 8-10 (alkaline); it usually falls within the slightly acidic to neutral range, hence falling between 6 and 8 on the pH scale.
Here are the solubilities of four substances at 0°C, in grams of solute per 100 mL of water. If the temperature increases to 20°C, what would you expect to happen to the solubility figures?
- A. Citric acid and potassium phosphate will decrease; nitrogen and oxygen will increase.
- B. Citric acid and potassium phosphate will increase; nitrogen and oxygen will decrease.
- C. All four figures will increase.
- D. All four figures will decrease.
Correct Answer: C
Rationale: Solubility generally tends to increase with temperature for most solid solutes in liquid solvents due to higher kinetic energy leading to better solute-solvent interactions. As the temperature increases from 0°C to 20°C, all four solubility figures are expected to increase. Choice A is incorrect because solubility tends to increase with temperature. Choice B is incorrect as well for the same reason. Choice D is incorrect because the solubility of solid solutes typically increases with temperature.
Which compound is a Hydrogen or proton donor, corrosive to metals, causes blue litmus paper to become red, and becomes less acidic when mixed with a base?
- A. Base
- B. Acid
- C. Salt
- D. Hydroxide
Correct Answer: B
Rationale: The correct answer is 'Acid.' An acid is a compound that donates protons (H+), is corrosive to metals, and turns blue litmus paper red. When an acid is mixed with a base, they react to form salts and water, resulting in a decrease in acidity. Choices A, C, and D are incorrect because bases accept protons rather than donate them, salts are the products of acid-base reactions, and hydroxides are typically bases, not acids.
If fifty-six kilograms of a radioactive substance has a half-life of 12 days, how many days will it take the substance to decay naturally to only 7 kilograms?
- A. 8
- B. 12
- C. 36
- D. 48
Correct Answer: C
Rationale: To decay from 56 kg to 7 kg, the substance needs to go through 3 half-lives (56 kg · 2 · 2 · 2 = 7 kg). Since each half-life is 12 days, the total time required is 12 days per half-life x 3 half-lives = 36 days. Choice A is incorrect because it does not consider the concept of half-lives. Choice B is incorrect because it represents the duration of a single half-life, not the total time required for the decay. Choice D is incorrect as it does not account for the multiple half-lives needed for the substance to decay from 56 kg to 7 kg.
What is the correct name of ZnSOâ‚„?
- A. Zinc sulfate
- B. Zinc sulfide
- C. Zinc sulfur
- D. Zinc oxide
Correct Answer: A
Rationale: The correct name of ZnSOâ‚„ is zinc sulfate. In this compound, zinc is combined with the polyatomic ion sulfate (SOâ‚„). Sulfate is a common anion formed from sulfur and oxygen atoms. Therefore, the correct name for ZnSOâ‚„ is zinc sulfate. Choice B, Zinc sulfide, is incorrect because sulfide is a different anion (S²â») compared to sulfate (SOâ‚„²â»). Choice C, Zinc sulfur, is incorrect as it does not represent the correct anion in the compound. Choice D, Zinc oxide, is incorrect as it involves an oxygen anion, not sulfate.