What is the oxidation state of the sulfur atom in sulfuric acid H2SO4?
- A. 4
- B. 6
- C. 8
- D. 10
Correct Answer: B
Rationale: In sulfuric acid (H2SO4), sulfur has an oxidation state of +6. The oxidation state is determined by considering the overall charge of the compound and the known oxidation states of other elements. In this case, hydrogen is typically +1, and oxygen is -2. To balance the charges and match the compound's overall charge of 0, sulfur must have an oxidation state of +6. Choice A (4) is incorrect because it doesn't balance the charges in the compound. Choices C (8) and D (10) are also incorrect as they are not valid oxidation states for sulfur in this compound.
You may also like to solve these questions
Which, if any, of these statements about solubility is correct?
- A. The solubility of a substance is defined as its concentration in a saturated solution
- B. Substances with solubilities much less than 1 g/100 mL of solvent are generally considered insoluble
- C. A saturated solution is one that cannot dissolve any more solute
- D. All of these statements are correct
Correct Answer: D
Rationale: A. The solubility of a substance is indeed defined as the concentration of a solute that can be dissolved in a solvent to form a saturated solution at a specific temperature and pressure. B. Substances with solubilities much less than 1 g/100 mL of solvent are generally considered insoluble because they do not dissolve in significant amounts in the solvent. C. A saturated solution is one that cannot dissolve any more solute as it has reached its maximum capacity at a specific temperature and pressure. Therefore, all the statements provided are correct, making option D the correct answer.
Which scientific principle predicts that the solubility of a gas or volatile substance in a liquid is proportional to the partial pressure of the substance over the liquid (P = kC)?
- A. Boyle's Law
- B. Gay-Lussac's Law
- C. Henry's Law
- D. Charles' Law
Correct Answer: C
Rationale: Henry's Law states that the solubility of a gas in a liquid is directly proportional to the partial pressure of the gas above the liquid. The equation P = kC represents Henry's Law, where P is the partial pressure of the gas, C is the concentration of the gas in the liquid, and k is a constant. This law is applicable to dilute solutions where the gas does not significantly affect the liquid's volume. Therefore, in the context of gas solubility in liquids, Henry's Law is the appropriate principle that describes the relationship between solubility and partial pressure.
Boyle's Law relates the pressure and volume of a gas at constant temperature, Gay-Lussac's Law deals with the pressure and temperature relationship of a gas at constant volume, and Charles' Law describes the relationship between the volume and temperature of a gas at constant pressure. These laws are not directly related to the solubility of gases in liquids, making them incorrect choices for this question.
A molecule of water contains hydrogen and oxygen in a 1:8 ratio by mass. This is a statement of _____.
- A. The law of multiple proportions
- B. The law of conservation of mass
- C. The law of conservation of energy
- D. The law of constant composition
Correct Answer: D
Rationale: The statement that a molecule of water contains hydrogen and oxygen in a 1:8 ratio by mass is an example of the law of constant composition. This law states that all samples of a given chemical compound have the same elemental composition. In the case of water (H2O), no matter where you obtain a sample of water, it will always be composed of hydrogen and oxygen in a 1:8 ratio by mass. The law of multiple proportions deals with compounds that can be formed by the combination of elements in different ratios. The law of conservation of mass states that mass is neither created nor destroyed in a chemical reaction. The law of conservation of energy states that energy cannot be created or destroyed, only transferred or converted.
Which of the following statements, if any, are correct?
- A. pH is a measure of the effective concentration of hydrogen ions in a solution and is approximately related to the molarity of H+ by pH = - log [H+]
- B. pH is a measure of the effective concentration of oxygen ions in a solution and is not related to the molarity of O+ by pH = - log [O+]
- C. pH is a measure of the effective concentration of hydrogen atoms in a solution and is not directly related to the polarity of H+ by pH = - log [H+]
- D. Acidity is a measure of the effective concentration of hydrogen ions in a solution and is not directly related to the molarity of H+ by pH = - log [H+]
Correct Answer: A
Rationale: Statement A is correct. pH is a measure of the effective concentration of hydrogen ions in a solution, and it is related to the molarity of H+ by the formula pH = - log [H+]. This equation illustrates the logarithmic relationship between pH and the concentration of hydrogen ions. Oxygen ions and hydrogen atoms are not directly related to pH in the same manner as hydrogen ions. Acidity is determined by the concentration of hydrogen ions in a solution, and this concentration is what pH measures. Therefore, option A is the only statement that correctly defines the relationship between pH and the concentration of hydrogen ions in a solution. Choices B, C, and D are incorrect as they provide inaccurate information about the relationship between pH and the ions/atoms mentioned. Option B incorrectly associates pH with oxygen ions, option C mentions hydrogen atoms instead of hydrogen ions, and option D confuses acidity with pH, which is a measure of hydrogen ion concentration, not molarity.
The volume of a gas is directly proportional to its absolute temperature at constant pressure. This is a statement of:
- A. Combined Gas Law
- B. Boyle's Law
- C. Charles' Law
- D. The Ideal Gas Law
Correct Answer: C
Rationale: Charles' Law states that the volume of a gas is directly proportional to its absolute temperature at constant pressure. This means that as the temperature of a gas increases, its volume also increases proportionally, and vice versa. This relationship between temperature and volume is a key feature of Charles' Law. The Combined Gas Law involves the relationships between pressure, volume, and temperature of a gas. Boyle's Law describes the inverse relationship between the pressure and volume of a gas at constant temperature. The Ideal Gas Law combines Boyle's Law, Charles' Law, and Avogadro's Law into a single expression. Therefore, the correct answer is Charles' Law, as it specifically describes the direct relationship between the temperature and volume of a gas.