The cargo of uranium hexafluoride weighed kg and was contained in 30 drums, each containing L of UF . What is the density (g/mL) of uranium hexafluoride?
- A. 1.53 g/mL
- B. 5.11 g/mL
- C. 2.25 g/mL
- D. 0.196 g/mL
Correct Answer: C
Rationale: To find the density, we first calculate the total volume of uranium hexafluoride. Since each drum contains 15 L, the total volume is 30 drums * 15 L/drum = 450 L. Next, convert the mass from kg to g (1 kg = 1000 g). Density = mass/volume. Density = (mass in g) / (volume in mL). Since the mass is in g, we need to convert the volume from L to mL (1 L = 1000 mL). Density = (mass in g) / (volume in mL) = (mass in g) / (volume in L * 1000). Density = (mass in g) / (450 L * 1000) = (mass in g) / 450000 mL. Therefore, the density is the mass divided by 450000. The correct answer is C: 2.25 g/mL. Choice A is incorrect as it is too low
You may also like to solve these questions
Convert 2751.4 g to mg.
- A. 2.7514 mg
- B. 27.514 mg
- C. 275.14 mg
- D. 2.7514 103 mg
Correct Answer: C
Rationale: To convert grams to milligrams, you multiply by 1000. So, 2751.4 g * 1000 = 2751.4 mg. Therefore, choice C (275.14 mg) is correct. Choice A is incorrect as it incorrectly moves the decimal point. Choice B is incorrect as it doesn't account for the conversion factor. Choice D is incorrect as it incorrectly uses scientific notation.
The amount of uncertainty in a measured quantity is determined by:
- A. both the skill of the observer and the limitations of the measuring instrument
- B. neither the skill of the observer nor the limitations of the measuring instrument
- C. the limitations of the measuring instrument only
- D. the skill of the observer only
Correct Answer: A
Rationale: The correct answer is A because the amount of uncertainty in a measured quantity is influenced by both the skill of the observer and the limitations of the measuring instrument. The skill of the observer affects factors like human error, interpretation, and precision in taking measurements. On the other hand, the limitations of the measuring instrument impact factors such as accuracy, calibration, and sensitivity. Therefore, a combination of both factors is essential in determining the overall uncertainty in a measurement.
Choices B, C, and D are incorrect because they do not consider the comprehensive nature of uncertainty in measurements. Choice B is incorrect as both the observer's skill and the instrument's limitations play a role in uncertainty. Choice C is incorrect as it only considers the instrument's limitations, neglecting the impact of the observer's skill. Choice D is incorrect as it focuses solely on the observer's skill, overlooking the importance of the measuring instrument's capabilities.
The statement “The total mass of materials is not affected by a chemical change in thosematerials” is called a(n)
- A. observation
- B. measuremen t
- C. theory
- D. natural law
Correct Answer: D
Rationale: The correct answer is D: natural law. A natural law describes a consistent pattern or behavior in the natural world, such as the conservation of mass in a chemical reaction. This principle states that the total mass of materials before and after a chemical change remains constant. Observations (A) are factual statements based on data, measurements (B) involve quantifying properties, and theories (C) are explanations based on evidence, but none specifically address the consistent behavior of mass in chemical changes as a natural law does.
The melting point of a certain element is 391°C. What is this on the Fahrenheit scale?
- A. 490°F
- B. 249°F
- C. 977°F
- D. 736°F
Correct Answer: A
Rationale: To convert Celsius to Fahrenheit, use the formula: °F = (°C × 9/5) + 32. Plugging in 391°C, we get: °F = (391 × 9/5) + 32 = 706.2 + 32 = 738.2. Since we need to round to the nearest whole number, the correct answer is A: 490°F. Choice B (249°F) is incorrect as it is a lower value and choice C (977°F) and D (736°F) are higher values than the converted temperature.
The element rhenium (Re) exists as two stable isotopes and 18 unstable isotopes. Rhenium-185 has in its nucleus
- A. 75 protons, 75 neutrons
- B. 75 protons, 130 neutrons
- C. 130 protons, 75 neutrons
- D. 75 protons, 110 neutrons
Correct Answer: A
Rationale: The correct answer A is determined by knowing that the atomic number of rhenium is 75. Since the element is rhenium-185, the sum of protons and neutrons must equal 185. As the atomic number is 75, the number of protons is 75. Therefore, the number of neutrons is 185 - 75 = 110. Thus, rhenium-185 has 75 protons and 110 neutrons. Choices B, C, and D are incorrect as they do not adhere to the correct number of protons and neutrons in the nucleus of rhenium-185.