At the peak of a baseball's trajectory, which of the following forces is acting on the ball?
- A. Only gravitational force
- B. Only the force of air resistance
- C. Both gravitational force and the force of air resistance
- D. Neither gravitational force nor the force of air resistance
Correct Answer: A
Rationale: At the peak of a baseball's trajectory, the ball momentarily stops moving upwards before it starts to fall back down. During this moment of temporary rest, the only force acting on the ball is the gravitational force pulling it downward towards the Earth. The force of air resistance is negligible at this point because the ball is momentarily stationary, and air resistance requires motion to be significant. Therefore, the correct answer is that only the gravitational force is acting on the ball at the peak of its trajectory. Choices B, C, and D are incorrect because air resistance does not have a significant effect when the ball is at its peak and momentarily stationary.
You may also like to solve these questions
Where is pseudostratified columnar epithelium primarily found?
- A. Skeletal muscle
- B. Bony skeleton
- C. External ears
- D. Bloodstream
Correct Answer: C
Rationale: Pseudostratified columnar epithelium is a type of epithelial tissue found in the respiratory tract, including the lining of the trachea and bronchi. It is also found in the male reproductive system and parts of the auditory tube and external ear canal. Among the options provided, the external ears (option C) are the most relevant location for pseudostratified columnar epithelium. Skeletal muscle (option A) is primarily composed of muscle fibers, not epithelial tissue. The bony skeleton (option B) is composed of bone tissue. The bloodstream (option D) consists of blood cells and plasma, not epithelial tissue.
Which factor do colligative properties of solutions depend on?
- A. Concentration of the solvent
- B. All of the above
- C. Chemical identity of the solute
- D. Number of solute particles in solution
Correct Answer: D
Rationale: Colligative properties of solutions depend on the number of solute particles in solution. These properties, such as boiling point elevation, freezing point depression, vapor pressure lowering, and osmotic pressure, are proportional to the number of solute particles present in the solution. The chemical identity of the solute or the concentration of the solvent does not influence colligative properties, making choices A and C incorrect. Therefore, the correct answer is D, the number of solute particles in solution.
What is the difference between DNA and RNA?
- A. Both are double-stranded.
- B. DNA contains deoxyribose sugar, while RNA contains ribose sugar.
- C. RNA contains the nitrogenous base uracil, while DNA contains thymine.
- D. Both are identical molecules.
Correct Answer: B
Rationale: A) Incorrect. DNA is double-stranded, but RNA is typically single-stranded.
B) Correct. DNA contains deoxyribose sugar, which lacks an oxygen atom on the 2' carbon of the sugar ring, while RNA contains ribose sugar, which has an additional hydroxyl group on the 2' carbon.
C) Incorrect. RNA contains the nitrogenous base uracil, while DNA contains thymine.
D) Incorrect. DNA and RNA have distinct structures and functions, so they are not identical molecules.
Two identical balls, one made of clay and the other made of steel, are dropped from the same height. Which ball reaches the ground first, neglecting air resistance?
- A. The clay ball due to its lower density
- B. The steel ball due to its higher density
- C. Both balls reach the ground simultaneously
- D. It depends on the initial velocities of the balls
Correct Answer: C
Rationale: In the absence of air resistance, both balls will experience the same acceleration due to gravity (9.8 m/s^2) regardless of their densities or materials. This means that both balls will reach the ground at the same time, assuming they are dropped from the same height simultaneously. The differences in density or material composition do not affect the rate at which objects fall in a vacuum. Therefore, both the clay and steel balls, being identical in shape and starting position, will have the same free-fall acceleration and will hit the ground simultaneously. Choices A and B are incorrect because the density of the materials does not impact the time it takes for objects to fall under gravity alone. Choice D is incorrect as the initial velocities do not play a role in the time taken to fall in a vacuum, where only the acceleration due to gravity affects the motion.
What is the scientific term for a muscle that helps another muscle perform its action?
- A. Agonist
- B. Antagonist
- C. Synergist
- D. Fixator
Correct Answer: C
Rationale: A synergist is a muscle that assists the agonist, the primary muscle responsible for a specific movement, in performing that movement. Synergists stabilize joints and provide additional support to the prime mover muscle, enhancing the efficiency and effectiveness of the movement. Choice A, Agonist, refers to the muscle primarily responsible for a specific movement. Choice B, Antagonist, refers to a muscle that opposes the action of the agonist. Choice D, Fixator, refers to a muscle that stabilizes the origin of the prime mover muscle, maintaining the desired position during movement.