Four 5 V batteries are connected in series. What is the total voltage of the circuit?
- A. 5.0 V
- B. 10.0 V
- C. 15.0 V
- D. 20.0 V
Correct Answer: D
Rationale: When batteries are connected in series, their voltages add up. Therefore, the total voltage of the circuit with four 5 V batteries connected in series will be 5 V + 5 V + 5 V + 5 V = 20 V. Choices A, B, and C are incorrect because the voltages of the batteries add up in series, resulting in a total of 20 V.
You may also like to solve these questions
A circular running track has a circumference of 2,500 meters. What is the radius of the track?
- A. 1,000 m
- B. 400 m
- C. 25 m
- D. 12 m
Correct Answer: B
Rationale: The radius of a circular track can be calculated using the formula: Circumference = 2 π radius. Given that the circumference of the track is 2,500 m, we can plug this into the formula and solve for the radius: 2,500 = 2 π radius. Dividing both sides by 2π gives: radius = 2,500 / (2 3.1416) ≈ 397.89 m. Therefore, the closest answer is 400 m, making option B the correct choice. Option A (1,000 m) is too large, option C (25 m) is too small, and option D (12 m) is significantly smaller than the calculated radius.
Longitudinal waves have vibrations that move ___________.
- A. at right angles to the direction of the vibrations
- B. in the direction opposite to that of the wave
- C. in the same direction as the wave
- D. in waves and troughs
Correct Answer: C
Rationale: In longitudinal waves, the vibrations of particles occur in the same direction as the wave propagates. This means the particles move back and forth in the direction of the wave, creating compressions and rarefactions along the wave. Therefore, the correct choice is C, in the same direction as the wave. Choice A is incorrect because transverse waves, not longitudinal waves, have vibrations at right angles to the direction of wave propagation. Choice B is incorrect as it describes the motion in transverse waves. Choice D is incorrect as it is an inaccurate representation of how longitudinal waves propagate.
How do you determine the velocity of a wave?
- A. Multiply the frequency by the wavelength.
- B. Add the frequency and the wavelength.
- C. Subtract the wavelength from the frequency.
- D. Divide the wavelength by the frequency.
Correct Answer: A
Rationale: The velocity of a wave can be determined by multiplying the frequency of the wave by the wavelength. This relationship is given by the formula: velocity = frequency wavelength. By multiplying the frequency by the wavelength, you can calculate the speed at which the wave is traveling. This formula is derived from the basic wave equation v = f λ, where v represents velocity, f is frequency, and λ is wavelength. Therefore, to find the velocity of a wave, one must multiply its frequency by its wavelength. Choices B, C, and D are incorrect. Adding, subtracting, or dividing the frequency and wavelength does not yield the correct calculation for wave velocity. The correct formula for determining wave velocity is to multiply the frequency by the wavelength.
When two identical charged spheres, both positively charged, are brought close together, the electrostatic force between them will be:
- A. Slightly attractive
- B. Zero
- C. Strongly attractive
- D. Strongly repulsive
Correct Answer: D
Rationale: When two positively charged spheres are brought close together, they will experience a repulsive force due to their like charges. The electrostatic force causes the spheres to repel each other, making the correct answer D: Strongly repulsive. The force is not dependent on the material of the spheres, and the force is definitely not zero, as like charges repel. Choice A is incorrect as like charges do not attract each other. Choice C is incorrect as like charges repel, not attract.
Which vehicle has the greatest momentum?
- A. A 9,000-kg railroad car traveling at 3 m/s
- B. A 2,000-kg automobile traveling at 24 m/s
- C. A 1,500-kg MINI Coupe traveling at 29 m/s
- D. A 500-kg glider traveling at 89 m/s
Correct Answer: D
Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. The momentum formula is p = m v, where p is momentum, m is mass, and v is velocity. Comparing the momentum of each vehicle: A: 9,000 kg 3 m/s = 27,000 kg·m/s B: 2,000 kg 24 m/s = 48,000 kg·m/s C: 1,500 kg 29 m/s = 43,500 kg·m/s D: 500 kg 89 m/s = 44,500 kg·m/s. Therefore, the glider (500-kg) traveling at 89 m/s has the greatest momentum of 44,500 kg·m/s, making it the correct choice. Options A, B, and C have lower momentum values compared to option D, proving that the 500-kg glider traveling at 89 m/s has the highest momentum among the given vehicles.