How are mass and inertia related?
- A. Mass is a measure of inertia
- B. Mass has no relationship with inertia
- C. Inertia is a measure of weight
- D. Inertia increases with decreasing mass
Correct Answer: A
Rationale: Mass is a measure of inertia. Inertia is the resistance of an object to changes in its state of motion, and mass quantifies this resistance. Objects with more mass have greater inertia, meaning they are more resistant to changes in their motion. Therefore, mass and inertia are directly related, with mass being a fundamental factor that determines the level of inertia an object possesses. Choice B is incorrect because mass and inertia are indeed related. Choice C is incorrect as inertia is not a measure of weight but rather a property related to an object's mass. Choice D is incorrect because inertia actually increases with increasing mass, not decreasing mass.
You may also like to solve these questions
According to Newton's third law of motion, if you push against a wall with a certain force, the wall will push back with:
- A. A smaller force
- B. An equal force
- C. A greater force
- D. No force at all
Correct Answer: B
Rationale: According to Newton's third law of motion, for every action, there is an equal and opposite reaction. When you push against a wall with a certain force, the wall will push back on you with an equal force in the opposite direction. Choice A is incorrect because the wall exerts an equal force back. Choice C is incorrect as it suggests a greater force, which goes against Newton's third law. Choice D is incorrect as the wall does exert a force back in response to your push.
Which of the following blood vessels carries oxygenated blood away from the heart?
- A. Pulmonary artery
- B. Aorta
- C. Superior vena cava
- D. Inferior vena cava
Correct Answer: B
Rationale: The aorta is the correct answer because it is the main artery in the body that carries oxygenated blood away from the heart to the rest of the body. The pulmonary artery carries deoxygenated blood from the heart to the lungs for oxygenation. The superior and inferior vena cava are veins that carry deoxygenated blood from the body back to the heart. Therefore, choices A, C, and D are incorrect as they do not carry oxygenated blood away from the heart.
What is the significance of the nuclear envelope breaking down during mitosis?
- A. It allows the chromosomes to condense and become visible.
- B. It allows the spindle apparatus to form and attach to the chromosomes.
- C. It allows the sister chromatids to separate.
- D. It allows the nuclear material to be evenly distributed to the daughter cells.
Correct Answer: B
Rationale: A) The breakdown of the nuclear envelope does not directly cause the chromosomes to condense and become visible. Chromosome condensation is a separate process that occurs before mitosis begins.
B) The breakdown of the nuclear envelope is crucial for the formation of the spindle apparatus, a structure made of microtubules that helps separate the chromosomes during cell division. The spindle apparatus attaches to the chromosomes and helps move them to opposite poles of the cell.
C) The separation of sister chromatids occurs during anaphase, which is facilitated by the spindle apparatus. The breakdown of the nuclear envelope is not directly involved in this process.
D) The even distribution of nuclear material to daughter cells is achieved through the movement of chromosomes by the spindle apparatus, which is made possible by the breakdown of the nuclear envelope.
What is the final stage of both mitosis and meiosis?
- A. Interphase
- B. Telophase
- C. Cytokinesis
- D. G1 phase
Correct Answer: B
Rationale: - Interphase (option A) is not the final stage of mitosis or meiosis; it is the phase before cell division where the cell prepares for division by growing and replicating its DNA.
- Telophase (option B) is the final stage of both mitosis and meiosis. During telophase, the separated chromosomes reach opposite poles of the cell, the nuclear membrane reforms around each set of chromosomes, and the chromosomes begin to decondense.
- Cytokinesis (option C) is the process of dividing the cytoplasm to form two separate daughter cells. While it occurs after telophase, it is not considered the final stage of mitosis or meiosis.
- G1 phase (option D) is the first gap phase in the cell cycle, occurring before DNA replication. It is not the final stage of mitosis or meiosis.
Which type of immune cell does the human immunodeficiency virus (HIV) target and destroy?
- A. Neutrophils
- B. Macrophages
- C. Helper T cells
- D. Memory B cells
Correct Answer: C
Rationale: HIV targets and destroys Helper T cells, which are vital for coordinating the immune response against infections. The destruction of Helper T cells weakens the immune system, leading to acquired immunodeficiency syndrome (AIDS). Neutrophils (Choice A) are primarily involved in acute inflammatory responses and fighting bacterial infections. Macrophages (Choice B) play a role in phagocytosis and antigen presentation but are not the primary target of HIV. Memory B cells (Choice D) are responsible for mounting a quicker and more robust antibody response upon re-exposure to a pathogen, but they are not the main target of HIV infection.
Nokea