In the reaction 2Na + 2H2O → 2NaOH + H2, what is the limiting reactant when 3 moles of sodium react with 2 moles of water?
- A. Na
- B. H2O
- C. NaOH
- D. H2
Correct Answer: A
Rationale: The balanced chemical equation indicates that 2 moles of sodium react with 2 moles of water to yield 2 moles of sodium hydroxide and 1 mole of hydrogen gas. When 3 moles of sodium react with only 2 moles of water, sodium becomes the limiting reactant as it is present in excess compared to the available water molecules. This situation arises because not all sodium atoms can fully react with the limited amount of water, resulting in sodium being the limiting reactant in this specific case. Choice B (H2O), choice C (NaOH), and choice D (H2) are incorrect as they are not the limiting reactant in the given reaction scenario.
You may also like to solve these questions
Which hormone is responsible for regulating blood sugar levels and is produced by the pancreas?
- A. Insulin
- B. Glucagon
- C. Testosterone
- D. Estrogen
Correct Answer: A
Rationale: Insulin is the correct answer. It is the hormone produced by the pancreas that regulates blood sugar levels by facilitating the uptake of glucose from the blood into cells for energy production or storage. Glucagon, also produced by the pancreas, has the opposite effect of increasing blood sugar levels by promoting the release of stored glucose from the liver. Testosterone and estrogen are sex hormones produced by the testes and ovaries, respectively, and are not directly involved in regulating blood sugar levels.
What is the principle behind the phenomenon of refraction, where waves bend when entering a new medium?
- A. Change in wavelength
- B. Change in frequency
- C. Change in wave speed
- D. None of the above
Correct Answer: C
Rationale: Refraction occurs due to a change in wave speed when waves enter a new medium. As waves travel from one medium to another, their speed changes, causing them to bend. This change in speed is responsible for the bending of waves during refraction. It is not the change in wavelength or frequency that causes refraction, but rather the change in speed as waves move through different mediums. Therefore, the correct answer is the change in wave speed (Choice C). Choices A and B are incorrect as refraction is not primarily influenced by changes in wavelength or frequency, but by changes in wave speed. Choice D is also incorrect as there is a specific principle, which is the change in wave speed, behind the phenomenon of refraction.
In a chemical reaction, the total amount of:
- A. Matter remains the same
- B. Matter increases
- C. Matter decreases
- D. Energy remains the same
Correct Answer: A
Rationale: The Law of Conservation of Mass states that matter cannot be created or destroyed in a chemical reaction, only rearranged. This principle implies that the total amount of matter before and after a chemical reaction must remain constant, supporting the correct answer choice A. Choice B is incorrect because the total amount of matter does not increase in a chemical reaction; it is conserved. Choice C is incorrect as the total amount of matter does not decrease in a chemical reaction; it is conserved. Choice D is incorrect since the conservation of energy is a different principle and does not directly relate to the total amount of matter in a chemical reaction.
What is the term for a group of organisms that can interbreed and produce fertile offspring?
- A. Genus
- B. Phylum
- C. Kingdom
- D. Species
Correct Answer: D
Rationale: A species is defined as a group of organisms that can interbreed and produce fertile offspring, which is a fundamental concept in biology. This ability to interbreed and produce fertile offspring is a key characteristic that distinguishes one species from another. Genus (option A) refers to a taxonomic rank that includes one or more closely related species, not the ability to interbreed. Phylum (option B) and kingdom (option C) are higher taxonomic ranks that encompass a broader range of organisms, not specifically defined by interbreeding and fertile offspring production. Therefore, the correct answer is 'Species.'
Identify the element with the electron configuration: 1s2 2s2 2p6 3s2 3p6. To which group and period does this element belong?
- A. Group 16, Period 3
- B. Group 14, Period 3
- C. Group 18, Period 3
- D. Group 17, Period 2
Correct Answer: C
Rationale: The given electron configuration matches that of Argon, an element found in Group 18 of the periodic table. This element is in the third period, as indicated by the highest energy level (n=3) where electrons are present. Therefore, the correct answer is Group 18, Period 3. Choice A (Group 16, Period 3) corresponds to sulfur, not the given electron configuration. Choice B (Group 14, Period 3) corresponds to silicon, not the given electron configuration. Choice D (Group 17, Period 2) corresponds to chlorine, which is in Period 3 but not in Group 18, making it incorrect for the given electron configuration.