What color does phenolphthalein turn in the presence of an acid?
- A. Clear
- B. Blue
- C. Pink
- D. Red
Correct Answer: C
Rationale: In the presence of an acid, phenolphthalein turns pink. Phenolphthalein is a pH indicator that is colorless in acidic solutions but turns pink in basic solutions. Therefore, when added to an acidic solution, phenolphthalein will exhibit a pink coloration. Choice A, 'Clear,' is incorrect because phenolphthalein does not remain colorless in the presence of an acid. Choice B, 'Blue,' is incorrect as phenolphthalein does not turn blue in the presence of an acid. Choice D, 'Red,' is incorrect as phenolphthalein does not exhibit a red color in acidic solutions.
You may also like to solve these questions
Among the following elements, which is a nonmetal?
- A. Mercury
- B. Magnesium
- C. Sulfur
- D. Potassium
Correct Answer: C
Rationale: Sulfur is a nonmetal as it is located on the right side of the periodic table. Nonmetals generally exhibit properties such as being brittle, poor conductors of heat and electricity, and having lower melting points compared to metals. Mercury (A), Magnesium (B), and Potassium (D) are all metals due to their metallic properties. Mercury is a liquid metal at room temperature, Magnesium is a solid metal, and Potassium is a solid metal as well. Therefore, the correct answer is C, Sulfur.
Here are the solubilities of four substances at 0°C, in grams of solute per 100 mL of water. If the temperature increases to 20°C, what would you expect to happen to the solubility figures?
- A. Citric acid and potassium phosphate will decrease; nitrogen and oxygen will increase.
- B. Citric acid and potassium phosphate will increase; nitrogen and oxygen will decrease.
- C. All four figures will increase.
- D. All four figures will decrease.
Correct Answer: C
Rationale: Solubility generally tends to increase with temperature for most solid solutes in liquid solvents due to higher kinetic energy leading to better solute-solvent interactions. As the temperature increases from 0°C to 20°C, all four solubility figures are expected to increase. Choice A is incorrect because solubility tends to increase with temperature. Choice B is incorrect as well for the same reason. Choice D is incorrect because the solubility of solid solutes typically increases with temperature.
Which compound is a Hydrogen or proton donor, corrosive to metals, causes blue litmus paper to become red, and becomes less acidic when mixed with a base?
- A. Base
- B. Acid
- C. Salt
- D. Hydroxide
Correct Answer: B
Rationale: The correct answer is 'Acid.' An acid is a compound that donates protons (H+), is corrosive to metals, and turns blue litmus paper red. When an acid is mixed with a base, they react to form salts and water, resulting in a decrease in acidity. Choices A, C, and D are incorrect because bases accept protons rather than donate them, salts are the products of acid-base reactions, and hydroxides are typically bases, not acids.
What type of chemical reaction is represented by AB → A + B?
- A. Synthesis
- B. Decomposition
- C. Single replacement
- D. Double replacement
Correct Answer: B
Rationale: The chemical equation AB → A + B represents a decomposition reaction. In a decomposition reaction, a single compound breaks down into two or more simpler substances. In this specific reaction, compound AB is decomposed into its elements, A and B, making it a decomposition reaction. Choice A, Synthesis, involves the combination of two or more substances to form a more complex product, which is not the case here. Choices C and D, Single replacement and Double replacement, involve the exchange of ions between compounds or elements, which is not happening in the given reaction.
What is the molarity of a solution containing 45 moles of NaCl in 4 liters?
- A. 0.11 M NaCl
- B. 0.45 M NaCl
- C. 1.8 M NaCl
- D. 8.9 M NaCl
Correct Answer: A
Rationale: To calculate the molarity of a solution, you use the formula: Molarity (M) = moles of solute / liters of solution. In this case, M = 45 moles / 4 L = 11.25 M. The correct answer is 0.11 M NaCl. Choice B is incorrect as it doesn't match the calculated value. Choice C is also incorrect as it is significantly higher than the correct molarity. Choice D is incorrect as it is excessively high compared to the calculated value.