What happens to the density of a substance if its mass increases while its volume remains constant?
- A. Density increases
- B. Density decreases
- C. Density remains constant
- D. Density becomes zero
Correct Answer: A
Rationale: When the mass of a substance increases while its volume remains constant, the density, which is calculated by dividing mass by volume, will increase. This is because with a higher mass and the volume staying the same, the ratio of mass to volume (density) will be greater, resulting in an overall increase in density. Choice B, 'Density decreases,' is incorrect because an increase in mass with constant volume leads to a higher density. Choice C, 'Density remains constant,' is incorrect as an increase in mass will cause the density to increase. Choice D, 'Density becomes zero,' is incorrect because even with an increase in mass, as long as volume remains constant, density will not reach zero; it will increase instead.
You may also like to solve these questions
What functional group is present in ethers?
- A. Hydroxyl
- B. Carbonyl
- C. Ether
- D. Amine
Correct Answer: C
Rationale: The functional group present in ethers is -O-, representing an oxygen atom bonded to two alkyl or aryl groups. Therefore, choice C, 'Ether,' is the correct answer. Choices A, B, and D refer to different functional groups: hydroxyl (-OH), carbonyl (C=O), and amine (NH2), respectively, which are not present in ethers. Ethers are characterized by the oxygen atom bonded to two carbon groups, distinguishing them from the other functional groups mentioned in the choices.
Which type of energy is possessed by an object due to its position or configuration?
- A. Kinetic energy
- B. Thermal energy
- C. Potential energy
- D. Electrical energy
Correct Answer: C
Rationale: Potential energy is the energy that an object possesses due to its position or configuration. It is considered stored energy that can be converted into other forms of energy to do work. When an object is lifted against gravity or compressed, it gains potential energy. Kinetic energy, the incorrect choice A, is the energy of motion possessed by an object. Thermal energy, the incorrect choice B, is related to the temperature of an object due to the motion of its particles. Electrical energy, the incorrect choice D, is related to the flow of electric charge in a circuit or system. Therefore, the correct answer is potential energy as it is associated with an object's position or configuration.
Which division of the nervous system is responsible for involuntary functions such as heart rate, digestion, and respiratory rate?
- A. Somatic nervous system
- B. Autonomic nervous system
- C. Peripheral nervous system
- D. Central nervous system
Correct Answer: B
Rationale: The autonomic nervous system is the correct answer. It is responsible for controlling involuntary functions such as heart rate, digestion, respiratory rate, and other automatic processes in the body. The somatic nervous system controls voluntary movements, making choice A incorrect. The peripheral nervous system consists of nerves outside the brain and spinal cord, which is not directly responsible for these involuntary functions, making choice C incorrect. The central nervous system includes the brain and spinal cord, but it is not primarily responsible for regulating involuntary functions, making choice D incorrect.
What is the term for the maximum amount of solute that can dissolve in a solvent at a specific temperature and pressure?
- A. Molarity
- B. Solubility
- C. Concentration
- D. Saturation
Correct Answer: B
Rationale: Solubility is the correct term for the maximum amount of solute that can dissolve in a solvent at a specific temperature and pressure. Molarity is a measure of concentration, not the maximum amount that can dissolve. Concentration is a general term for the amount of solute present in a given amount of solvent. Saturation is related to solubility but specifically refers to a state where no more solute can be dissolved in the solvent.
Which type of isomerism arises due to differences in the arrangement of atoms around a double bond?
- A. Chain isomerism
- B. Functional group isomerism
- C. Cis-trans isomerism
- D. Stereoisomerism
Correct Answer: C
Rationale: Cis-trans isomerism, also known as geometric isomerism, arises due to differences in the arrangement of atoms around a double bond. In cis isomers, similar groups are on the same side of the double bond, while in trans isomers, similar groups are on opposite sides of the double bond. This type of isomerism is a subset of stereoisomerism, which includes all isomers that have the same connectivity but differ in spatial arrangement. Chain isomerism involves differences in the carbon chain arrangement, functional group isomerism involves different functional groups, and stereoisomerism is a broader category that encompasses isomers with the same connectivity but different spatial arrangement.
Nokea