What is the oxidation state of the sulfur atom in sulfuric acid H2SO4?
- A. 4
- B. 6
- C. 8
- D. 10
Correct Answer: B
Rationale: In sulfuric acid (H2SO4), sulfur has an oxidation state of +6. The oxidation state is determined by considering the overall charge of the compound and the known oxidation states of other elements. In this case, hydrogen is typically +1, and oxygen is -2. To balance the charges and match the compound's overall charge of 0, sulfur must have an oxidation state of +6. Choice A (4) is incorrect because it doesn't balance the charges in the compound. Choices C (8) and D (10) are also incorrect as they are not valid oxidation states for sulfur in this compound.
You may also like to solve these questions
Which, if any, of these statements about solubility is correct?
- A. The solubility of a substance is defined as its concentration in a saturated solution
- B. Substances with solubilities much less than 1 g/100 mL of solvent are generally considered insoluble
- C. A saturated solution is one that cannot dissolve any more solute
- D. All of these statements are correct
Correct Answer: D
Rationale: A. The solubility of a substance is indeed defined as the concentration of a solute that can be dissolved in a solvent to form a saturated solution at a specific temperature and pressure. B. Substances with solubilities much less than 1 g/100 mL of solvent are generally considered insoluble because they do not dissolve in significant amounts in the solvent. C. A saturated solution is one that cannot dissolve any more solute as it has reached its maximum capacity at a specific temperature and pressure. Therefore, all the statements provided are correct, making option D the correct answer.
What are mixtures of 2 or more metals called?
- A. Solutions
- B. Alloys
- C. Compounds
- D. Suspensions
Correct Answer: B
Rationale: Alloys are mixtures of two or more metals, combining their properties to create materials with enhanced characteristics. Examples of alloys include bronze (copper and tin) and steel (iron and carbon). Alloys are commonly used in various industries due to their improved strength, durability, and other desirable qualities. Solutions (Choice A) refer to a homogeneous mixture of two or more substances, where one substance is dissolved in another. Compounds (Choice C) are substances composed of two or more elements chemically combined in fixed proportions. Suspensions (Choice D) are heterogeneous mixtures where particles are dispersed but can settle out over time.
Which law states that the pressure of an ideal gas is inversely proportional to its volume, given that the temperature and amount of gas remain constant?
- A. Henry's law
- B. Dalton's law
- C. Brown's law
- D. Boyle's law
Correct Answer: D
Rationale: Boyle's law describes the relationship between the pressure and volume of an ideal gas when the temperature and amount of gas are constant. According to Boyle's law, if the pressure of a gas increases, its volume decreases proportionally, and vice versa. This law is expressed by the equation P1V1 = P2V2, where P1 and V1 represent the initial pressure and volume, while P2 and V2 represent the final pressure and volume when the temperature and amount of gas remain unchanged. Understanding Boyle's law is essential in comprehending the behavior of gases under varying conditions and is fundamental in the study of thermodynamics.
The other choices are incorrect:
- Henry's law deals with the solubility of gases in liquids, not the relationship between pressure and volume of gases.
- Dalton's law states that the total pressure exerted by a mixture of gases is equal to the sum of the partial pressures of individual gases, not the pressure-volume relationship.
- Brown's law is a fabricated concept and does not exist in the context of gas laws.
The volume of a gas is directly proportional to its absolute temperature at constant pressure. This is a statement of:
- A. Combined Gas Law
- B. Boyle's Law
- C. Charles' Law
- D. The Ideal Gas Law
Correct Answer: C
Rationale: Charles' Law states that the volume of a gas is directly proportional to its absolute temperature at constant pressure. This means that as the temperature of a gas increases, its volume also increases proportionally, and vice versa. This relationship between temperature and volume is a key feature of Charles' Law. The Combined Gas Law involves the relationships between pressure, volume, and temperature of a gas. Boyle's Law describes the inverse relationship between the pressure and volume of a gas at constant temperature. The Ideal Gas Law combines Boyle's Law, Charles' Law, and Avogadro's Law into a single expression. Therefore, the correct answer is Charles' Law, as it specifically describes the direct relationship between the temperature and volume of a gas.
A molecule of water contains hydrogen and oxygen in a 1:8 ratio by mass. This is a statement of _____.
- A. The law of multiple proportions
- B. The law of conservation of mass
- C. The law of conservation of energy
- D. The law of constant composition
Correct Answer: D
Rationale: The statement that a molecule of water contains hydrogen and oxygen in a 1:8 ratio by mass is an example of the law of constant composition. This law states that all samples of a given chemical compound have the same elemental composition. In the case of water (H2O), no matter where you obtain a sample of water, it will always be composed of hydrogen and oxygen in a 1:8 ratio by mass. The law of multiple proportions deals with compounds that can be formed by the combination of elements in different ratios. The law of conservation of mass states that mass is neither created nor destroyed in a chemical reaction. The law of conservation of energy states that energy cannot be created or destroyed, only transferred or converted.
Nokea