What is the primary function of platelets in the blood?
- A. To carry oxygen
- B. To clot blood
- C. To fight infection
- D. To transport nutrients
Correct Answer: B
Rationale: The correct answer is B: 'To clot blood.' Platelets play a crucial role in the clotting process, forming a plug at the site of blood vessel injury to prevent excessive bleeding. While red blood cells carry oxygen, white blood cells fight infection, and nutrients are transported by plasma, platelets are specifically responsible for blood clotting. Choice A is incorrect because red blood cells are responsible for carrying oxygen. Choice C is incorrect because white blood cells are primarily involved in fighting infection. Choice D is incorrect as the transport of nutrients is mainly carried out by plasma, not platelets.
You may also like to solve these questions
What is the term for the gradual loss of topsoil due to wind or water erosion?
- A. Desertification
- B. Leaching
- C. Salinization
- D. Acidification
Correct Answer: A
Rationale: A) Desertification is the correct term for the gradual loss of topsoil due to wind or water erosion. It refers to the process by which fertile land becomes desert, usually due to factors like drought, deforestation, or inappropriate agriculture practices. This process can lead to the degradation of land and contribute to the expansion of deserts. B) Leaching is the process in which minerals are washed out of the soil by water moving downwards through it. This is different from the loss of topsoil due to erosion. C) Salinization occurs when salt accumulates in the soil, typically as a result of irrigation in arid regions. While salinization affects soil quality, it is not specifically related to the gradual loss of topsoil due to erosion. D) Acidification refers to the decrease in soil pH, often caused by factors like acid rain or the use of acidic fertilizers. This process is distinct from the gradual loss of topsoil due to erosion.
Which of the following accurately describes saltatory conduction?
- A. It is faster than normal nerve conduction
- B. It occurs from one node of Ranvier to the next
- C. It only occurs in myelinated neurons
- D. All of the above
Correct Answer: D
Rationale: The correct answer is D, 'All of the above.' Saltatory conduction is faster than normal nerve conduction, occurs from one node of Ranvier to the next, and is exclusive to myelinated neurons. This form of conduction allows for the rapid transmission of nerve impulses by the action potential jumping between the nodes of Ranvier in myelinated neurons, enhancing the efficiency of signal propagation along the axon. Choice A is correct as saltatory conduction is indeed faster than normal conduction. Choice B is accurate as it describes the mechanism of conduction 'jumping' from one node of Ranvier to the next. Choice C is correct because saltatory conduction occurs specifically in myelinated neurons where the myelin sheath insulates the axon except at the nodes of Ranvier, facilitating faster transmission of nerve impulses.
Which of the following structures in the respiratory system is responsible for gas exchange?
- A. Trachea
- B. Alveoli
- C. Bronchi
- D. Diaphragm
Correct Answer: B
Rationale: The correct answer is B: Alveoli. The alveoli in the lungs are responsible for gas exchange. They have a thin membrane that allows for the exchange of oxygen and carbon dioxide between the air in the lungs and the blood in the capillaries surrounding them. This process is essential for respiration, providing oxygen to the body's tissues and removing carbon dioxide, a waste product of cellular metabolism. Choices A, C, and D are incorrect. The trachea is a passageway that carries air to and from the lungs but is not directly involved in gas exchange. Bronchi are airway passages that further divide into smaller bronchioles leading to the alveoli but do not perform gas exchange themselves. The diaphragm is a muscle involved in the breathing process by aiding in inhalation and exhalation, but it is not the structure responsible for gas exchange in the respiratory system.
How does sunscreen protect the skin from harmful ultraviolet (UV) rays?
- A. By reflecting UV rays away from the skin
- B. By absorbing UV rays and converting them to heat
- C. By blocking UV rays completely
- D. By stimulating melanin production
Correct Answer: B
Rationale: Sunscreen works by absorbing UV rays and converting them to heat. This mechanism helps to prevent the UV rays from penetrating the skin and causing damage such as sunburn, premature aging, and skin cancer. Reflecting UV rays away from the skin (option A) is not the primary function of sunscreen. While sunscreen does block UV rays, it does not do so completely (option C) as some UV rays may still penetrate the skin. Sunscreen does not stimulate melanin production (option D) as a means of protecting the skin from UV rays.
From which type of tissue is the myelin sheath derived, a fatty substance that insulates nerve fibers?
- A. Epithelial tissue
- B. Muscle tissue
- C. Nervous tissue (glial cells)
- D. Connective tissue
Correct Answer: C
Rationale: The myelin sheath, a fatty substance that insulates nerve fibers, is derived from nervous tissue, specifically glial cells. Glial cells, including oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system, are responsible for producing the myelin sheath that surrounds and insulates nerve fibers, aiding in the conduction of nerve impulses. Epithelial tissue (Choice A), Muscle tissue (Choice B), and Connective tissue (Choice D) are not responsible for producing the myelin sheath; instead, nervous tissue (glial cells) plays this crucial role.
Nokea