Which hormone stimulates the release of calcium from bones and increases blood calcium levels?
- A. Parathyroid hormone (PTH)
- B. Calcitonin
- C. Growth hormone
- D. Testosterone
Correct Answer: A
Rationale: Parathyroid hormone (PTH) is the correct answer. PTH stimulates the release of calcium from bones, leading to increased blood calcium levels. It acts on the bones to release calcium into the bloodstream, facilitates the kidneys' reabsorption of calcium, and triggers vitamin D activation to boost calcium absorption from the intestines.
Choice B, Calcitonin, is incorrect as it works in opposition to PTH by decreasing blood calcium levels through inhibiting calcium release from bones. Choices C and D, Growth hormone and Testosterone, are not directly involved in calcium homeostasis and do not regulate blood calcium levels through bone calcium release mechanisms.
You may also like to solve these questions
What is the primary purpose of control rods within a nuclear reactor?
- A. Reflecting neutrons back into the core
- B. Absorbing excess neutrons to control criticality
- C. Moderating the velocity of neutrons
- D. All of the above
Correct Answer: B
Rationale: The primary purpose of control rods in a nuclear reactor is to absorb excess neutrons to control criticality. When inserted into the reactor core, control rods absorb neutrons, reducing the number available for sustaining the fission chain reaction. This action allows operators to manage the reactor power levels and prevent overheating or runaway reactions. Reflecting neutrons back into the core and moderating neutron velocity are not the primary functions of control rods in a nuclear reactor. Choice A is incorrect because control rods do not reflect neutrons back into the core but absorb them. Choice C is incorrect as the moderation of neutron velocity is typically achieved by other materials like a moderator (e.g., water, graphite) rather than control rods. Choice D is incorrect as control rods do not reflect neutrons or moderate neutron velocity, making it an incorrect option.
What is the main function of valence electrons in chemical bonding?
- A. They are responsible for holding the nucleus together.
- B. They are involved in forming bonds with other atoms.
- C. They determine the element's physical properties.
- D. They play no role in chemical reactions.
Correct Answer: B
Rationale: Valence electrons are the electrons in the outermost energy level of an atom. These electrons are involved in forming bonds with other atoms, which is crucial for chemical bonding. By participating in bonding, valence electrons determine an atom's ability to form compounds and engage in chemical reactions. Therefore, the primary function of valence electrons is to facilitate the formation of bonds between atoms, making option B the correct answer. Choices A, C, and D are incorrect because valence electrons primarily influence chemical bonding by participating in the formation of bonds between atoms, rather than holding the nucleus together, determining physical properties, or having no role in chemical reactions.
What are the two main types of nuclear decay, and what differentiates them?
- A. Fission and fusion, based on the size of the nucleus
- B. Alpha and beta decay, based on the emitted particle
- C. Spontaneous and induced decay, based on the trigger
- D. Isotope decay and chain reactions, based on the stability of the nucleus
Correct Answer: B
Rationale: The correct answer is B. The two main types of nuclear decay are alpha and beta decay, which are differentiated based on the emitted particle. In alpha decay, an alpha particle (consisting of two protons and two neutrons) is emitted from the nucleus, while in beta decay, a beta particle (either an electron or a positron) is emitted. These decay types are distinguished by the particles they emit, not by the size of the nucleus, trigger, or stability of the nucleus. Choices A, C, and D are incorrect because fission, fusion, spontaneous, induced, isotope decay, and chain reactions are different processes in nuclear physics and do not represent the two main types of nuclear decay based on emitted particles.
Which of the following is NOT a source of genetic variation in a population?
- A. Mutations in genes
- B. Genetic drift (random fluctuations in allele frequencies)
- C. Gene flow (movement of genes between populations)
- D. Blending inheritance (traits of parents are averaged in offspring)
Correct Answer: D
Rationale: Rationale:
A) Mutations in genes: Mutations are changes in the DNA sequence that can introduce new alleles into a population, leading to genetic variation.
B) Genetic drift (random fluctuations in allele frequencies): Genetic drift refers to random changes in allele frequencies in a population, which can lead to genetic variation through chance events.
C) Gene flow (movement of genes between populations): Gene flow occurs when individuals move between populations, bringing new alleles with them and increasing genetic variation within populations.
D) Blending inheritance (traits of parents are averaged in offspring): Blending inheritance was a historical theory that suggested offspring inherit a blend of traits from their parents, leading to a reduction in genetic variation over time. However, this concept has been disproven by the understanding of Mendelian genetics, where traits are inherited independently and do not blend together.
Therefore, blending inheritance does not contribute
How is work defined in terms of force and displacement?
- A. Work is the product of force and displacement in any direction
- B. Work is done only when the displacement is vertical
- C. Work is done only when the force and displacement are perpendicular
- D. Work is the product of force and displacement in the direction of the force
Correct Answer: D
Rationale: Work is defined as the product of the force applied on an object and the displacement of the object in the direction of the force. This means that work is only done when the force and displacement are in the same direction. If the force and displacement are not in the same direction, only the component of the force in the direction of the displacement contributes to the work done. Therefore, choice D correctly defines work in terms of force and displacement. Choices A, B, and C are incorrect because work is specifically calculated based on the force and displacement in the direction of the force, not in any direction, only when the displacement is vertical, or when the force and displacement are perpendicular.