Which of the following arteries are not branches of the facial artery in the cervical portion?
- A. Ascending palatine artery
- B. Glandular artery
- C. Superior labial artery
- D. Tonsillar artery
Correct Answer: C
Rationale: The correct answer is C, the Superior labial artery. It is a branch of the facial artery in the facial portion, not in the cervical portion. The ascending palatine artery, glandular artery, and tonsillar artery are branches of the facial artery in the cervical portion. The ascending palatine artery supplies the palate, the glandular artery provides blood to the salivary glands, and the tonsillar artery is responsible for supplying blood to the tonsils. These arteries play a crucial role in the vascular supply of the head and neck region, aiding in various physiological functions.
You may also like to solve these questions
What is the structure and function of elastic arteries?
- A. They are the smallest arteries and constrict and dilate frequently.
- B. They are medium-sized arteries that distribute blood to various organs.
- C. They are the largest arteries and stretch and recoil to accommodate blood pressure changes.
- D. They are thin-walled arteries that supply blood to the capillaries.
Correct Answer: C
Rationale: The corrected answer is C. Elastic arteries, like the aorta, are the largest arteries in the body. They possess elastic fibers in their walls, allowing them to stretch and recoil in response to the pulsatile nature of blood flow from the heart. This elasticity helps to maintain blood pressure by absorbing the pressure waves generated by the heart's contractions and ensuring continuous blood flow to the organs. Choices A, B, and D are incorrect because elastic arteries are not the smallest arteries, do not constrict and dilate frequently, are not medium-sized arteries for distributing blood to various organs, and are not thin-walled arteries supplying blood to capillaries. Elastic arteries have a specific structure and function related to their ability to accommodate blood pressure changes due to their elastic properties, which is essential for the cardiovascular system's proper functioning.
What is the major difference between somatic and germline mutations?
- A. Somatic mutations usually benefit the individual while germline mutations usually harm them.
- B. Since germline mutations only affect one cell, they are less noticeable than the rapidly dividing somatic cells.
- C. Somatic mutations are not expressed for several generations, but germline mutations are expressed immediately.
- D. Germline mutations are usually inherited while somatic mutations will affect only the individual.
Correct Answer: D
Rationale: The major difference between somatic and germline mutations is that germline mutations are usually inherited and can be passed on to offspring, while somatic mutations occur in non-reproductive cells and only affect the individual in which they occur. This means that germline mutations have the potential to be present in future generations, while somatic mutations do not.
What are the two primary functions of the respiratory system?
- A. Delivering nutrients and removing CO2
- B. Delivering O2 and removing CO2, maintaining blood pH
- C. Maintaining blood pH and delivering nutrients
- D. Delivering O2 and nutrients to the cells
Correct Answer: B
Rationale: The correct answer is B. The respiratory system's primary functions include delivering oxygen (O2) to the body's cells for cellular respiration and removing carbon dioxide (CO2), thereby aiding in the maintenance of blood pH. These functions are crucial for gas exchange and the overall metabolic processes within the body. Choice A is incorrect as the respiratory system primarily delivers O2, not nutrients, and removes CO2, not delivering it. Choice C is incorrect as while the respiratory system helps maintain blood pH by removing CO2, it does not primarily deliver nutrients. Choice D is incorrect as it combines the functions of delivering O2 and nutrients, which are distinct roles of different systems in the body.
What is the function of valves in arteries?
- A. To maintain high blood pressure for the proper diffusion of nutrients in capillaries.
- B. To prevent backflow of blood due to high pressure away from the heart.
- C. As a vestigial trait from evolution, like the appendix, that serves no purpose.
- D. Valves are absent in arteries but present in veins.
Correct Answer: B
Rationale: Valves in arteries serve the crucial function of preventing backflow of blood. Arteries carry blood at high pressure away from the heart, and the valves ensure that blood flows in one direction, towards the capillaries, to maintain efficient circulation. Without these valves, there would be a risk of blood flowing backward, compromising the effectiveness of blood circulation in the body. Choices A, C, and D are incorrect. Choice A incorrectly suggests that valves maintain high blood pressure for nutrient diffusion in capillaries, which is not their function. Choice C inaccurately compares valves to vestigial traits, like the appendix, implying they serve no purpose, which is untrue. Choice D is incorrect as valves are indeed present in arteries to regulate blood flow, not just in veins.
Which term describes a position closer to the center of the body?
- A. Distal
- B. Proximal
- C. Lateral
- D. Medial
Correct Answer: B
Rationale: The correct answer is B: Proximal. Proximal is used to describe a position closer to the center of the body. Distal, the incorrect choice, refers to a position farther away from the center. Lateral, another incorrect choice, indicates a position on the side of the body. Medial, also an incorrect option, describes a position towards the middle or midline of the body.
Nokea