Which of the following lobes in the cerebral cortex is primarily responsible for processing and integrating sensory information received from the rest of the body?
- A. frontal lobe
- B. occipital lobe
- C. parietal lobe
- D. temporal lobe
Correct Answer: C
Rationale: The parietal lobe is the correct answer because it is primarily responsible for processing and integrating sensory information received from the rest of the body, including touch, pressure, temperature, and pain. This lobe plays a crucial role in spatial awareness, perception, and attention to sensory stimuli. It helps individuals make sense of the world around them and is essential for various sensory processes. The frontal lobe (choice A) is more associated with functions like reasoning, planning, and problem-solving. The occipital lobe (choice B) is responsible for processing visual information. The temporal lobe (choice D) is involved in functions like memory, auditory processing, and language comprehension, but it is not the primary lobe responsible for processing and integrating sensory information from the body.
You may also like to solve these questions
A scientist designs an experiment to test the hypothesis that exposure to more sunlight will increase the growth rate of elodea, a type of aquatic plant. The scientist has accumulated data from previous experiments that identify the average growth rate of elodea exposed to natural sunlight in the wild.
In the experiment set up, there are three tanks housing ten elodea each. Tank A is positioned in front of a window to receive natural sunlight similar to what elodea are exposed to; tank B is positioned in front of the same window but has an additional sunlight-replicating lamp affixed to it; and tank C is positioned in a dark corner with no exposure to natural sunlight.
Which of the following is the control group in the above experiment?
- A. tank A
- B. tank B
- C. tank C
- D. There is no control group in this experiment.
Correct Answer: D
Rationale: The correct answer is D: There is no control group in this experiment. A control group is a group in an experiment that does not receive the treatment being studied in order to serve as a baseline for comparison. In this case, all three tanks (A, B, and C) are being treated with different amounts of fertilizer, and there is no group that is left untreated to serve as a control for comparison. Choices A, B, and C are incorrect because they all represent tanks that are part of the experimental groups receiving different amounts of fertilizer, thus none of them can be considered the control group.
Which of the following describes the path through which air moves during inhalation?
- A. mouth/nose > pharynx > larynx > trachea > bronchi > bronchioles > alveoli
- B. bronchioles > alveoli > bronchi > larynx > pharynx > lungs
- C. mouth/nose > bronchi > bronchioles > alveoli > lungs > trachea
- D. alveoli > bronchioles > lungs > bronchi > trachea > larynx > pharynx > mouth/nose
Correct Answer: A
Rationale: The correct path through which air moves during inhalation is from the mouth/nose > pharynx > larynx > trachea > bronchi > bronchioles > alveoli. This sequence accurately represents the typical route air takes as it travels from the external environment into the lungs to facilitate gas exchange in the alveoli. Choice B is incorrect as it reverses the order of bronchioles and alveoli. Choice C is incorrect as it starts with mouth/nose but then incorrectly lists lungs before trachea. Choice D is incorrect as it reverses the entire sequence of the respiratory pathway, starting with alveoli instead of mouth/nose.
Which of the following biological macromolecules is non-soluble, composed of hydrocarbons, and acts as an important source of energy storage for the body?
- A. carbohydrates
- B. nucleic acids
- C. lipids
- D. proteins
Correct Answer: C
Rationale: Lipids are non-soluble biological macromolecules composed mostly of hydrocarbons such as fatty acids. They act as an essential source of energy storage for the body, providing efficient storage of energy in the form of fats. Carbohydrates are also an energy source for the body, but lipids excel in long-term energy storage. Nucleic acids are not known for energy storage; instead, they are involved in genetic information transmission and protein synthesis. Proteins play diverse roles in the body, such as enzymatic functions, structural support, and immune response, but they are not primarily known as a source of energy storage.
Which of the following is a true statement about dominance in genetics?
- A. All genes adhere to Mendel's law of dominance.
- B. A dominant allele will always be expressed.
- C. When two dominant alleles are present, the resulting phenotype will express both traits.
- D. There are three or more alleles possible for all genes.
Correct Answer: B
Rationale: In genetics, dominance refers to the relationship between two different alleles of a gene where one allele (dominant) masks the expression of another allele (recessive) in an individual's phenotype. The correct statement about dominance is that a dominant allele will always be expressed in the phenotype, even in the presence of a recessive allele. This means that if an individual has at least one dominant allele for a particular trait, that trait will be expressed. Choice A is incorrect because not all genes follow Mendel's law of dominance; exceptions do exist. Choice C is incorrect because when two dominant alleles are present, only one will be expressed due to complete dominance. Choice D is incorrect as there can be more than three alleles for a gene, and not all genes have three or more alleles.
Chromatids divide into identical chromosomes and migrate to opposite ends of the cell in which of the following phases of mitosis?
- A. metaphase
- B. anaphase
- C. prophase
- D. telophase
Correct Answer: B
Rationale: During anaphase of mitosis, the sister chromatids detach from each other and migrate to opposite poles of the cell. This process ensures that each daughter cell ultimately receives an identical set of chromosomes, as the chromatids separate and become individual chromosomes again. This is a crucial step in ensuring accurate distribution of genetic material during cell division. In metaphase, the chromosomes align at the cell's equator but do not separate yet. Prophase is the phase where chromatin condenses into chromosomes and the nuclear envelope breaks down. Telophase is the final phase where the nuclear envelope reforms around the separated chromosomes.
Nokea