Which radioactive isotope is commonly used in medical imaging techniques such as PET scans?
- A. Uranium-235
- B. Plutonium-239
- C. Potassium-40
- D. Fluorine-18
Correct Answer: D
Rationale: Fluorine-18 is the radioactive isotope commonly used in medical imaging techniques such as PET scans. It is frequently used in the form of fluorodeoxyglucose (FDG) to locate areas of heightened metabolic activity in the body, such as in cancer cells. Uranium-235 and Plutonium-239 are not typically employed in medical imaging, and Potassium-40, while a naturally occurring radioactive isotope found in the human body, is not commonly used in medical imaging techniques.
You may also like to solve these questions
What is the significance of studying pedigrees in human genetics?
- A. Predicting the exact outcome of genetic crosses in humans.
- B. Tracing the inheritance of complex traits with multiple contributing genes.
- C. Identifying carriers of dominant genetic disorders.
- D. Determining the risk of acquiring a specific mutation de novo.
Correct Answer: B
Rationale: Pedigrees are diagrams that show the relationships within a family and can be used to track the inheritance patterns of specific traits or diseases. While pedigrees can provide information on the inheritance of single gene disorders (such as identifying carriers of dominant genetic disorders, as mentioned in option C), their primary significance lies in studying complex traits with multiple contributing genes. These traits do not follow simple Mendelian inheritance patterns and are influenced by both genetic and environmental factors. By analyzing pedigrees, researchers can identify patterns of inheritance for complex traits, such as polygenic diseases or traits influenced by gene-environment interactions. Therefore, option B is the most appropriate choice as it captures the main significance of studying pedigrees in human genetics.
Which of the following processes breaks down cellular components for recycling or waste removal?
- A. Photosynthesis
- B. Cellular respiration
- C. Cell division
- D. Phagocytosis
Correct Answer: D
Rationale: The correct answer is D: Phagocytosis. Phagocytosis is the process by which cells engulf and break down cellular components or foreign particles for recycling or waste removal. It is a vital mechanism used by cells to maintain homeostasis and remove waste materials. Photosynthesis (A) is the process by which plants convert light energy into chemical energy to produce food, not for breaking down cellular components. Cellular respiration (B) is the process by which cells generate energy from nutrients, not for waste removal. Cell division (C) is the process by which cells replicate and divide to form new cells during growth, repair, or development, not for breaking down cellular components.
During vigorous exercise, why does the respiratory rate increase?
- A. Meet the increased demand for oxygen in working muscles
- B. Eliminate excess carbon dioxide more slowly
- C. Conserve energy for physical activity
- D. Decrease the amount of oxygen delivered to the body
Correct Answer: A
Rationale: During vigorous exercise, the muscles require more oxygen to produce energy for physical activity. The increased respiratory rate helps to deliver more oxygen to the working muscles to meet this demand. This process is essential for sustaining physical activity and preventing fatigue. Choice A is the correct answer as it accurately describes the purpose of the increased respiratory rate during vigorous exercise. Choices B, C, and D are incorrect. Choice B, 'Eliminate excess carbon dioxide more slowly,' is inaccurate as the primary reason for the increased respiratory rate during exercise is to meet the increased demand for oxygen, not to eliminate carbon dioxide. Choice C, 'Conserve energy for physical activity,' is incorrect because increasing the respiratory rate actually expends energy to meet the oxygen demand of the working muscles. Choice D, 'Decrease the amount of oxygen delivered to the body,' is incorrect as the increased respiratory rate is specifically to deliver more oxygen to the body during exercise.
Muscles that work in opposition to each other, producing opposing movements, are called:
- A. Synergists
- B. Antagonists
- C. Agonists
- D. Fixators
Correct Answer: B
Rationale: Antagonist muscles are pairs of muscles that work in opposition to each other, producing opposing movements. When one muscle contracts, the other relaxes to allow the movement to occur smoothly. Synergists are muscles that work together to create a movement, not in opposition. Agonists are muscles primarily responsible for producing a specific movement, not opposing each other. Fixators are muscles that stabilize joints to allow other movements to take place, providing a stable base for muscle actions but do not produce opposing movements.
Which neurotransmitter is involved in muscle movement?
- A. Dopamine
- B. Acetylcholine
- C. Serotonin
- D. GABA
Correct Answer: B
Rationale: Acetylcholine is the neurotransmitter responsible for muscle movement. It is released from motor neurons at the neuromuscular junction and binds to receptors on muscle fibers, initiating muscle contraction. Dopamine, serotonin, and GABA serve different functions in the brain and body, such as regulating mood, sleep, and inhibitory signaling, respectively. Therefore, choices A, C, and D are incorrect in the context of muscle movement.