Which statement accurately describes the electron cloud model of the atom?
- A. Electrons precisely orbit the nucleus in defined paths.
- B. Electrons occupy specific energy levels around the nucleus with varying probabilities.
- C. Electrons are clustered tightly within the nucleus.
- D. Electrons move randomly throughout the entire atom.
Correct Answer: B
Rationale: The electron cloud model of the atom describes electrons as occupying specific energy levels around the nucleus with varying probabilities. This model does not suggest that electrons precisely orbit in defined paths as stated in option A. It acknowledges the wave-like behavior of electrons and their uncertainty in position, which is not accounted for in options C and D. Option C is incorrect as electrons are not clustered tightly within the nucleus but exist in the space surrounding the nucleus. Option D is incorrect as electrons do not move randomly throughout the entire atom but have specific probabilities of being found in different regions based on their energy levels. Therefore, option B is the most accurate description of the electron cloud model of the atom.
You may also like to solve these questions
What is the 'lock-and-key' model?
- A. Protein folding
- B. Enzyme-substrate interaction
- C. Muscle contraction
- D. Blood clotting
Correct Answer: B
Rationale: The 'lock-and-key' model describes the specificity of the interaction between enzymes and their substrates. In this model, the enzyme's active site acts like a lock that can only be opened by the specific substrate molecule, which serves as the key. This specific binding ensures that enzymes catalyze particular reactions and do not interact with other molecules indiscriminately. Protein folding (option A) is the process by which a protein attains its functional three-dimensional structure but is not directly related to the lock-and-key model. Muscle contraction (option C) and blood clotting (option D) are complex biological processes but are not directly associated with the lock-and-key model of enzyme-substrate interaction.
What does the term 'electron configuration' refer to in relation to an atom?
- A. The arrangement of electrons in an atom's orbitals.
- B. The number of protons in an atom's nucleus.
- C. The number of neutrons in an atom's nucleus.
- D. The number of electrons in an atom's valence shell.
Correct Answer: A
Rationale: The electron configuration of an atom refers to the arrangement of electrons in the atom's orbitals. This arrangement determines the atom's chemical properties and behavior. The number of protons in an atom's nucleus (option B) is known as the atomic number, which defines the element. The number of neutrons in an atom's nucleus (option C) contributes to the atom's mass number. The number of electrons in an atom's valence shell (option D) is important for understanding the atom's reactivity and bonding behavior, but the electron configuration specifically refers to how electrons are distributed among the different orbitals in an atom.
What is the Doppler effect, and how does it explain the shift in frequency of sound waves perceived by an observer?
- A. It affects light waves, not sound waves.
- B. It's the change in wave speed due to medium density.
- C. It's the perceived change in frequency due to relative motion.
- D. It's the bending of waves due to different mediums.
Correct Answer: C
Rationale: The Doppler effect is the perceived change in frequency of a wave due to relative motion between the source of the wave and the observer. This phenomenon is commonly observed with sound waves, where the pitch of a sound appears higher as the source moves towards the observer and lower as the source moves away. Option A is incorrect as the Doppler effect primarily applies to sound waves, not light waves. Option B is incorrect because the Doppler effect is not about the change in wave speed due to medium density but rather a change in perceived frequency. Option D is incorrect as it describes wave bending due to different mediums, which is not the primary concept behind the Doppler effect. Therefore, option C accurately describes the Doppler effect and its application to the shift in frequency of sound waves perceived by an observer.
What happens to the internal energy of a system when it performs work on its surroundings?
- A. It increases.
- B. It decreases.
- C. It remains the same.
- D. Insufficient information.
Correct Answer: B
Rationale: When a system performs work on its surroundings, it loses energy in the form of work done. This results in a decrease in the internal energy of the system. Work done by the system is considered as negative work, leading to a decrease in internal energy. Therefore, the correct answer is that the internal energy decreases when a system performs work on its surroundings. Choice A is incorrect as the internal energy decreases, not increases. Choice C is incorrect because the internal energy changes due to the work done. Choice D is incorrect because the information provided is sufficient to determine the change in internal energy.
What is the primary function of the atrioventricular (AV) node within the heart?
- A. Generate the electrical impulse for contraction (pacemaker function)
- B. Transmit the electrical impulse from the atria to the ventricles, regulating the timing of contraction.
- C. Increase blood pressure within the ventricles during systole.
- D. Separate oxygenated and deoxygenated blood flow in the heart.
Correct Answer: B
Rationale: The correct answer is B: Transmit the electrical impulse from the atria to the ventricles, regulating the timing of contraction. The primary function of the atrioventricular (AV) node is to coordinate the transmission of electrical signals between the atria and the ventricles. It ensures proper timing between atrial and ventricular contractions, allowing for efficient blood pumping through the heart. Choice A is incorrect because the AV node does not generate the initial electrical impulse; that role is typically attributed to the sinoatrial (SA) node. Choice C is incorrect as the AV node does not directly influence blood pressure within the ventricles. Choice D is also incorrect as the separation of oxygenated and deoxygenated blood is primarily achieved by the anatomical structure of the heart (e.g., atria and ventricles) and not the AV node.
Nokea