A radioactive isotope has a half-life of 20 years. How many grams of a 6-gram sample will remain after 40 years?
- A. 8
- B. 6
- C. 3
- D. 1.5
Correct Answer: C
Rationale: The half-life of a radioactive isotope is the time it takes for half of the original sample to decay. After each half-life period, half of the initial sample remains. In this case, after the first 20 years, half of the 6-gram sample (3 grams) will remain. After another 20 years (total of 40 years), half of the remaining 3 grams will remain, which is 1.5 grams. Therefore, 3 grams will be left after 40 years. Choice A is incorrect as it doesn't consider the concept of half-life and incorrectly suggests an increase in the sample. Choice B is incorrect as it assumes no decay over time. Choice D is incorrect as it miscalculates the remaining amount after two half-life periods.
You may also like to solve these questions
What is the correct formula for sodium nitrate?
- A. NaNO
- B. Na NO
- C. NaNO₃
- D. Na NOâ‚‚
Correct Answer: C
Rationale: The correct formula for sodium nitrate is NaNO₃. In this formula, 'Na' represents sodium, 'N' represents nitrogen, and 'O₃' represents three oxygen atoms. Sodium nitrate consists of one sodium ion (Naâº) and one nitrate ion (NO₃â»), which means the correct formula is NaNO₃. Choice A (NaNO) is incorrect as it lacks the subscript indicating the presence of three oxygen atoms. Choice B (Na NO) is incorrect as it includes a space between 'Na' and 'NO', which is not part of the standard chemical formula notation. Choice D (Na NOâ‚‚) is incorrect as it indicates a different compound with a nitrite ion (NOâ‚‚â») instead of nitrate ion.
What is the oxidation state of the nitrogen atom in the compound NH3?
- A. -3
- B. -1
- C. +1
- D. +3
Correct Answer: B
Rationale: In the compound NH3, nitrogen is bonded to three hydrogen atoms. Hydrogen is always assigned an oxidation state of +1. Since the overall charge of NH3 is zero, the oxidation state of nitrogen must be -1 to balance out the hydrogen's +1 oxidation state. Therefore, the correct oxidation state of the nitrogen atom in NH3 is -1. Choice A (-3) is incorrect because it does not account for the electronegativity of hydrogen. Choice C (+1) and Choice D (+3) are incorrect as the nitrogen atom in NH3 needs to balance the +1 oxidation state of each hydrogen atom, resulting in a total of -3 to maintain the compound's charge neutrality.
Which of the following compounds is ionic?
- A. NaCl
- B. Hâ‚‚O
- C. HCl
- D. NH₃
Correct Answer: A
Rationale: The correct answer is NaCl (sodium chloride). Ionic compounds are formed by the transfer of electrons between a metal and a nonmetal. In NaCl, sodium (Na) is a metal, and chlorine (Cl) is a nonmetal. Sodium donates an electron to chlorine, leading to the formation of the ionic bond between them. This results in the formation of an ionic compound, where positively charged sodium ions are attracted to negatively charged chloride ions, creating a crystal lattice structure. Choices B, C, and D are not ionic compounds. H₂O (water) is a covalent compound formed by the sharing of electrons between two nonmetals (oxygen and hydrogen). HCl (hydrogen chloride) and NH₃ (ammonia) are also covalent compounds involving nonmetals sharing electrons, not transferring them.
To the nearest whole number, what is the mass of one mole of hydrogen chloride?
- A. 36 g/mol
- B. 38 g/mol
- C. 71 g/mol
- D. 74 g/mol
Correct Answer: C
Rationale: The molar mass of hydrogen chloride (HCl) is calculated by adding the atomic masses of hydrogen (H) and chlorine (Cl) together. The atomic mass of hydrogen is approximately 1 g/mol, and the atomic mass of chlorine is approximately 35.5 g/mol. Therefore, the molar mass of hydrogen chloride (HCl) is approximately 1 + 35.5 = 36.5 g/mol. When rounded to the nearest whole number, it is 36 g/mol. Therefore, the correct answer is 36 g/mol. Choices A, B, and D are incorrect as they do not reflect the accurate molar mass of hydrogen chloride.
Which compound has a nonpolar bond in which the electrons are shared equally?
- A. Hâ‚‚O
- B. NH₃
- C. Clâ‚‚
- D. CHâ‚„
Correct Answer: D
Rationale: The compound CH₄, methane, has a nonpolar bond where carbon and hydrogen share electrons equally. This occurs because carbon and hydrogen have similar electronegativities, meaning they have equal abilities to attract shared electrons. Consequently, a nonpolar covalent bond is formed due to the balanced sharing of electrons between these atoms. Choices A, B, and C do not have nonpolar bonds with electrons shared equally. In H₂O (water), there are polar covalent bonds due to the difference in electronegativity between hydrogen and oxygen. In NH₃ (ammonia), the nitrogen-hydrogen bonds are polar because of the electronegativity difference. In Cl₂ (chlorine gas), the Cl-Cl bond is nonpolar, but the question specifies a compound, not an element, and chlorine does not share its electrons equally with another element in a compound.