What mineral is essential for muscle function and can cause cramps if deficient?
- A. Sodium
- B. Calcium
- C. Potassium
- D. Magnesium
Correct Answer: C
Rationale: Potassium is essential for muscle function, including muscle contraction. A deficiency in potassium can lead to muscle weakness and cramps. While sodium, calcium, and magnesium are also important minerals for muscle function, potassium is specifically known for its role in preventing muscle cramps by regulating muscle contractions and nerve signals.
You may also like to solve these questions
In a balanced chemical equation, the coefficients represent the:
- A. Number of elements
- B. Ratio of reactants and products
- C. Physical state of the substances
- D. Rate of the reaction
Correct Answer: A
Rationale: The correct answer is A: 'Number of elements.' In a balanced chemical equation, coefficients represent the ratio of moles of each species involved in the reaction. They indicate the relative number of molecules or formula units of each compound taking part in the reaction. Choice B, 'Ratio of reactants and products,' is incorrect because the coefficients in a balanced equation do not represent the ratio of reactants and products directly, but rather the stoichiometry of the reaction. Choice C, 'Physical state of the substances,' is incorrect because the physical states (solid, liquid, gas, or aqueous) are denoted with symbols next to the chemical formula, not the coefficients. Choice D, 'Rate of the reaction,' is incorrect as coefficients in a balanced equation do not provide information about the rate of the reaction, which is determined by factors like temperature, concentration, and catalysts.
A pendulum swings back and forth. What type of energy conversion occurs during its motion?
- A. Potential energy to kinetic energy and vice versa
- B. Thermal energy to mechanical energy and vice versa
- C. Chemical energy to electrical energy and vice versa
- D. Nuclear energy to radiant energy and vice versa
Correct Answer: A
Rationale: As the pendulum swings back and forth, it undergoes a continuous conversion between potential energy (at the highest point of the swing) and kinetic energy (at the lowest point of the swing). At the highest point, the pendulum has maximum potential energy due to its height above the ground. As it swings down, this potential energy is converted into kinetic energy, which is the energy of motion. At the lowest point of the swing, the pendulum has maximum kinetic energy and minimal potential energy. The process repeats as the pendulum swings back in the opposite direction, demonstrating the conversion between potential and kinetic energy. Choices B, C, and D are incorrect because the energy conversion in a swinging pendulum primarily involves changes between potential and kinetic energy, not thermal, chemical, electrical, nuclear, or radiant energy.
What is the term for a solution that has a higher concentration of solute compared to another solution?
- A. Saturated solution
- B. Unsaturated solution
- C. Dilute solution
- D. Concentrated solution
Correct Answer: D
Rationale: The correct answer is D, a concentrated solution. A concentrated solution contains a higher concentration of solute compared to another solution. This means there is a large amount of solute dissolved in the solvent, making it more concentrated than other solutions. Choices A, B, and C are incorrect. A saturated solution is one in which no more solute can be dissolved at a given temperature, an unsaturated solution can dissolve more solute at the given conditions, and a dilute solution has a low concentration of solute relative to the solvent.
Which property of matter refers to the amount of space occupied by an object?
- A. Mass
- B. Volume
- C. Weight
- D. Density
Correct Answer: B
Rationale: Volume refers to the amount of space occupied by an object. It is a measure of the three-dimensional space that an object occupies. Mass, on the other hand, refers to the amount of matter in an object, weight is the force of gravity acting on an object, and density is the mass of an object per unit volume. In this context, volume is the most appropriate choice as it directly relates to the amount of space an object occupies.
What is the SI unit of measurement for acceleration?
- A. Meters per second (m/s)
- B. Newton (N)
- C. Meters (m)
- D. Meters per second squared (m/s²)
Correct Answer: D
Rationale: The SI unit of measurement for acceleration is meters per second squared (m/s²). Acceleration is defined as the rate of change of velocity over time. It is a vector quantity with dimensions of length per time squared. Meters per second squared (m/s²) represents the change in velocity (meters per second) over a specific time interval (seconds) squared. Choice A, meters per second (m/s), represents velocity, not acceleration. Choice B, Newton (N), is the unit of force. Choice C, Meters (m), represents only distance, not acceleration. Therefore, the correct unit for acceleration is meters per second squared (m/s²).