Which substance shows a decrease in solubility in water with an increase in temperature?
- A. NaCl
- B. O
- C. KI
- D. CaCl
Correct Answer: C
Rationale: Potassium iodide (KI) shows a decrease in solubility in water with an increase in temperature. This is due to the dissolution of KI in water being an endothermic process. When the temperature rises, the equilibrium shifts toward the solid state, leading to a decrease in solubility. Therefore, as the temperature increases, KI becomes less soluble in water.
Choice A (NaCl) and Choice D (CaCl) do not exhibit a decrease in solubility with an increase in temperature. NaCl and CaCl are generally more soluble in water at higher temperatures. Choice B (Oxygen) is a gas and not typically considered in solubility discussions involving solids or liquids dissolving in water.
You may also like to solve these questions
What are the products of combustion of a hydrocarbon in excess oxygen?
- A. Carbon dioxide and water
- B. Naphthalene
- C. Chlorine and bromine
- D. Carbonium ions
Correct Answer: A
Rationale: The correct answer is A: Carbon dioxide and water. During the combustion of a hydrocarbon in excess oxygen, the hydrocarbon reacts to produce carbon dioxide and water vapor as the final products. This reaction is known as complete combustion, where the hydrocarbon combines with oxygen to form carbon dioxide and water. Choices B, C, and D are incorrect because naphthalene is a specific hydrocarbon compound, chlorine and bromine are not typically formed during the combustion of hydrocarbons in excess oxygen, and carbonium ions are not the products of this reaction.
What is the correct electron configuration for carbon?
- A. 1s²2s²2p¹
- B. 1s²2s²2p²
- C. 1s²2s²2p³
- D. 1s²2s²2pâ¶3s¹
Correct Answer: B
Rationale: The correct electron configuration for carbon is 1s²2s²2p². This configuration indicates that there are 2 electrons in the first energy level (1s²), 2 electrons in the second energy level (2s²), and 2 electrons in the second energy level (2p²). It adheres to the aufbau principle, which states that electrons fill orbitals starting from the lowest energy level, and the Pauli exclusion principle, which states that each electron in an atom must have a unique set of quantum numbers. Choice A is incorrect because it does not fill the 2p orbital correctly. Choice C is incorrect as it exceeds the number of possible electrons in the 2p orbital. Choice D is incorrect as it includes an electron in the 3s orbital, which is not part of the electron configuration for carbon.
What is the charge of a gamma ray?
- A. -1
- B. +1
- C. +2
- D. No charge
Correct Answer: D
Rationale: Gamma rays are a form of electromagnetic radiation with no charge. They are neutral particles that do not possess any electric charge. This characteristic allows them to be unaffected by electric or magnetic fields. Additionally, gamma rays travel at the speed of light in a vacuum. Choices A, B, and C are incorrect as gamma rays do not carry a charge of -1, +1, or +2; they are neutral entities.
The molar mass of some gases is as follows: carbon monoxide-28.01 g/mol; helium-4.00 g/mol; nitrogen-28.01 g/mol; and oxygen-32.00 g/mol. Which would you expect to diffuse most rapidly?
- A. Carbon monoxide
- B. Helium
- C. Nitrogen
- D. Oxygen
Correct Answer: B
Rationale: The rate of diffusion is inversely proportional to the molar mass of the gas. Helium has the lowest molar mass among the given gases, making it the lightest and fastest gas to diffuse. Therefore, helium would be expected to diffuse most rapidly compared to carbon monoxide, nitrogen, and oxygen. Carbon monoxide, nitrogen, and oxygen have higher molar masses than helium, so they would diffuse more slowly. Therefore, the correct answer is helium.
What is the correct name of MgO?
- A. Manganese oxide
- B. Magnesium oxide
- C. Magnesium oxate
- D. Magnesium hydroxide
Correct Answer: B
Rationale: The correct name of MgO is Magnesium oxide. Mg represents the chemical symbol for magnesium, and O represents the chemical symbol for oxygen. When these elements combine, they form magnesium oxide. Option A, Manganese oxide, is incorrect as it refers to a compound of manganese and oxygen, not magnesium. Option C, Magnesium oxate, is not a valid chemical compound name. Option D, Magnesium hydroxide, refers to a different compound consisting of magnesium, oxygen, and hydrogen.